

BENHA UNIVERSITY FACULTY OF ENGINEERING AT SHOUBRA

Post-Graduate ECE-601 **Active Circuit** Lecture #3 **Microstrip** lines **Instructor: Dr. Ahmad El-Banna** 

OVEMBER 2014









ECE-601, Lec#3, Nov 2014

)anna

© Ahmad

### **Stripline Transmission Lines**

- Microwave circuits that supports TEM or "quasi-TEM" modes are:
  - Microstrip and covered microstrip
  - Stripline
  - Slotline
  - Coplanar waveguide.
- Stripline has one or more interior strip conductors immersed in a dielectric with ground planes above and below.





**CE-601** 

### Formulas for Propagation Constant, Characteristic Impedance, and Attenuation

- Stripline can support the TEM mode exclusively provided that  $b \lesssim \lambda/4$  where  $\lambda = \lambda_0 / \sqrt{\varepsilon_r}$ .
- At higher frequencies, TE and TM modes may also propagate, which leads to signal distortion and other undesirable effects. This is called an "over-moded" waveguide.
- We'll assume that the (carrier) frequency is "low" enough that  $b \leq \lambda/4$  and only the TEM mode propagates. As with any TEM mode, in a stripline with  $\mu = \mu_0$ :

phase velocity

propagation constant

characteristic impedance of a transmission line

$$v_{p} = \frac{1}{\sqrt{LC}} = \frac{c_{0}}{\sqrt{\varepsilon_{r}}}$$
$$\beta = \frac{\omega}{v_{p}} = k_{0}\sqrt{\varepsilon_{r}}$$

•  $Z_0 = \sqrt{\frac{L}{C}} = \frac{\sqrt{LC}}{C} = \frac{1}{v_p C}$ 

none of these quantities depend on frequency for a TEM mode.



# FORWARD & REVERSE STRIPLINES DESIGN



)anna

, Nov 201

Jec#3

-601

### Forward Stripline Design

- We will need to design stripline with a specific  $Z_0$ .
- Determining the C value is the problem. There is no simple, exact analytical solution for stripline (or microstrip, for that matter).
- But extremely accurate numerical solutions can be found using a number of techniques including the method of moments and the finite element method, among others.
- By curve fitting to these numerical solutions, it can be shown that for a stripline:

$$Z_0 \approx \frac{30\pi}{\sqrt{\varepsilon_r}} \frac{b}{W_e + 0.441b} \quad \Omega$$

where W<sub>e</sub> is called an "effective strip width" given by

$$\frac{W_{e}}{b} = \frac{W}{b} - \begin{cases} 0 & \frac{W}{b} \ge 0.35 \\ \left(0.35 - \frac{W}{b}\right)^{2} & \frac{W}{b} < 0.35 \end{cases}$$



\*These formulas assume a strip with zero thickness and are quoted as being accurate to about 1% of the exact results.

### **Reverse Stripline Design**

• One can determine the "inverse" of  $Z_0$ , so that W/b can be determined once  $\varepsilon_r$  and the required  $Z_0$  are specified:

$$\frac{W}{b} = \begin{cases} x & Z_0 \sqrt{\varepsilon_r} \le 120\\ 0.85 - \sqrt{0.6 - x} & Z_0 \sqrt{\varepsilon_r} > 120 \end{cases}$$
  
where  $x = \frac{30\pi}{Z_0 \sqrt{\varepsilon_r}} - 0.441.$ 

• For example, with  $\varepsilon_r = 3.38$  and  $Z_0 = 50 \ \Omega$ ,  $50\sqrt{3.38} = 91.92$ .

$$\frac{W}{b} = \frac{30\pi}{50\sqrt{3.38}} - 0.441 = 0.5843$$

This is very close to the graphical solution we just obtained.

ECE-601 , Lec
$$\#3$$
 , Nov 2014  $\odot$  Ahmad  $\mathbb{E}$  J- $\mathbb{D}^a$ 





ECE-601, Lec#3, Nov 2014 ©,

anna)

Ahmad

### Microstrip lines

 One of the most widely used planar microwave circuit interconnections is microstrip. These are commonly formed by a strip conductor (land) on a dielectric substrate, which is backed by a ground plane.



- We will often assume the land has zero thickness, t.
- In practical circuits there will often be metallic walls and covers to protect the circuit. We will ignore these effects.
- Unlike stripline, a microstrip has more than one dielectric in which the EM fields are located.
- This presents a difficulty.





# Microstrip lines.

- If the field propagates as a TEM wave, then
- But which  $\varepsilon_r$  do we use? •
- The answer is neither because there is actually no purely TEM wave on the microstrip, but something that closely approximates it called a "quasi-TEM" mode.
- At low frequency, this mode is almost exactly TEM.
- Conversely, when the frequency becomes too high, there are axial components of E and/or H making the mode no longer quasi-TEM.
- This property leads to dispersive behavior.
- Numerical and other analysis have been performed on microstrip since approximately 1965.
- Some techniques, such as the method of moments, produce very accurate numerical solutions to equations derived directly from Maxwell's equations and incorporate the exact cross-sectional geometry and materials of the microstrip.

### Microstrip lines...

- From these solutions, simple and quite accurate analytical expressions for  $Z_0$ ,  $v_p$  etc. have been developed primarily by curve fitting.
- The result of these analyses is that at relatively "low" frequency, the wave propagates as a quasi-TEM mode with an effective relative permittivity,  $\epsilon_{r,e}$ :  $\varepsilon_{r,e} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \frac{1}{\sqrt{1 + 12d/W}}$
- The phase velocity and phase constant, respectively, are:  $v_p = \frac{c_0}{\sqrt{\varepsilon_{r,e}}}$ as for a typical TEM mode.  $\beta = k_0 \sqrt{\varepsilon_{r,e}}$
- In general,  $1 \le \varepsilon_{r,e} \le \varepsilon_r$
- The upper bound occurs if the entire space above the microstrip has • the same permittivity as the substrate, while the lower bound occurs if in this situation the material is chosen to be free space.

# Microstrip lines....

The characteristic impedance of the quasi-TEM mode on the microstrip can be approximated as

$$Z_{0} = \begin{cases} \frac{60}{\sqrt{\varepsilon_{r,e}}} \ln\left(\frac{8d}{W} + \frac{W}{4d}\right) & \frac{W}{d} \le 1\\ \frac{120\pi}{\sqrt{\varepsilon_{r,e}}\left[\frac{W}{d} + 1.393 + 0.667\ln\left(\frac{W}{d} + 1.444\right)\right]} & \frac{W}{d} > 1 \end{cases}$$

Alternatively, given a desired  $Z_0$  and  $\varepsilon_r$ , the necessary W/d can be computed from (3.197).

$$\frac{W}{d} = \begin{cases} \frac{8e^{A}}{e^{2A} - 2} & \text{for } W/d < 2\\ \frac{2}{\pi} \left[ B - 1 - \ln(2B - 1) + \frac{\epsilon_{r} - 1}{2\epsilon_{r}} \left\{ \ln(B - 1) + 0.39 - \frac{0.61}{\epsilon_{r}} \right\} \right] & \text{for } W/d > 2, \qquad A = \frac{Z_{0}}{60} \sqrt{\frac{\epsilon_{r} + 1}{2}} + \frac{\epsilon_{r} - 1}{\epsilon_{r} + 1} \left( 0.23 + \frac{0.11}{\epsilon_{r}} \right) \\ (3.197) \qquad B = \frac{377\pi}{2Z_{0}\sqrt{\epsilon_{r}}}. \end{cases}$$

the attenuation ٠ due to dielectric loss

6

$$\alpha_d = \frac{k_0 \epsilon_r (\epsilon_e - 1) \tan \delta}{2\sqrt{\epsilon_e} (\epsilon_r - 1)} \text{ Np/m},$$

where  $\tan \delta$  is the loss tangent of the dielectric.

The attenuation due

$$\alpha_c = \frac{R_s}{Z_0 W} \text{ Np/m},$$

 $R_s = \sqrt{\omega \mu_0 / 2\sigma}$  is the surface resistivity of the conductor.



Nov 2014

Lec#3

ECE-601



### Design Example

### EXAMPLE 3.7 MICROSTRIP LINE DESIGN

Design a microstrip line on a 0.5 mm alumina substrate ( $\epsilon_r = 9.9$ , tan  $\delta = 0.001$ ) for a 50  $\Omega$  characteristic impedance. Find the length of this line required to produce a phase delay of 270° at 10 GHz, and compute the total loss on this line, assuming copper conductors. Compare the results obtained from the approximate formulas of (3.195)-(3.199) with those from a microwave CAD package.

### Solution

First find W/d for  $Z_0 = 50 \Omega$ , and initially guess that W/d < 2. From (3.197),

A = 2.142, W/d = 0.9654.

So the condition that W/d < 2 is satisfied; otherwise we would use the expression for W/d > 2. Then the required line width is W = 0.9654d = 0.483 mm. From (3.195) the effective dielectric constant is  $\epsilon_e = 6.665$ . The line length,  $\ell$ , for a 270° phase shift is found as

$$\phi = 270^{\circ} = \beta \ell = \sqrt{\epsilon_e} k_0 \ell,$$
  

$$k_0 = \frac{2\pi f}{c} = 209.4 \text{ m}^{-1},$$
  

$$\ell = \frac{270^{\circ} (\pi/180^{\circ})}{\sqrt{\epsilon_e} k_0} = 8.72 \text{ mm}.$$

Attenuation due to dielectric loss is found from (3.198) as  $\alpha_d = 0.255 \text{ Np/m} =$ 0.022 dB/cm. The surface resistivity for copper at 10 GHz is 0.026  $\Omega$ , and the attenuation due to conductor loss is, from (3.199),  $\alpha_c = 0.0108 \text{ Np/cm} = 0.094$ dB/cm. The total loss on the line is then 0.101 dB.



### CAD tool

- Many tools are available for microwave CAD.
- The <u>Rogers ACM Division</u> introduces a new design program that is <u>free to download called the MWI-2010 Microwave</u> <u>Impedance Calculator</u>, a transmission line modeling tool for electronics engineers.
- Link to download:
  - <u>http://www.rogerscorp.com/acm/technology/index.aspx</u>
- Design the previous Example using the <u>MWI-2010 Microwave</u> <u>Impedance Calculator</u>.





### MULTI-LAYER MICROSTRIP LINES

Ref: K. R. Jha and G. Singh, Terahertz Planar Antennas for Next Generation Communication, DOI: 10.1007/978-3-319-02341-0\_2, Springer International Publishing Switzerland 2014



# Multi-layer Microstrip lines

- In general, the microstrip line is used to conduct the electromagnetic wave at low frequency.
- Beyond 60 GHz, its application is restricted due to the losses in the line.
- Due to this, there is a general consideration that the use of microstrip transmission line at THz frequency is impractical.
- Moving away from this theory, the microstrip transmission line has successfully been used to transmit the THz wave.
- The transmission line parameters become frequency dependent and need the empirical formula to evaluate these parameters at such high frequency.



, Nov 201

Lec#3

ECE-601

### Necessity of Multilayer Microstrip Transmission Line

- A microstrip transmission line can be designed on the different configuration of the substrate layers which may be single, double, or the multilayered material.
- With the development in the technology and the need of the system-on-chip (SOC) requirement, the use of the multilayered substrate has increased at high frequency.
- The use of the multilayered substrate material microstrip transmission line has a numerous advantages such as:
  - Capability to reduce the losses and to control the coefficient of expansion.
  - It is also an alternative solution to circuit layout and the combination of the substrate and semiconductor layer gives the slow-wave structure.
  - The multilayered substrate is also used in the antenna design where it shows good surface wave immunity gain, and bandwidth enhancement apart from the good mechanical integration.



### The **effective dielectric permittivity** of the multilayered substrate material is :

$$\varepsilon_{\rm rc} = \frac{|d_1| + |d_2| + \dots + |d_n|}{\left|\frac{d_1}{\varepsilon_1}\right| + \left|\frac{d_2}{\varepsilon_2}\right| + \dots + \left|\frac{d_n}{\varepsilon_n}\right|} \quad \text{for } h_n + h_{n-1} + \dots + h_1 \cong \lambda/10$$

where

$$d_{1} = \frac{K(k_{1})}{K'(k_{1})}$$

$$d_{2} = \frac{K(k_{2})}{K'(k_{2})} - \frac{K(k_{1})}{K'(k_{1})}$$

$$d_{3} = \frac{K(k_{3})}{K'(k_{3})} - \frac{K(k_{2})}{K'(k_{2})} - \frac{K(k_{1})}{K'(k_{1})}$$

$$d_{n} = \frac{K(k_{n})}{K'(k_{n})} - \frac{K(k_{n-1})}{K'(k_{n-1})} - \dots - \frac{K(k_{1})}{K'(k_{1})}$$

and in general,

$$k_n = \frac{1}{\cosh(\frac{\pi w}{4(h_n + h_{n-1} + h_{n-2} + \dots + h_1)})}$$
 for  $n = 1, 2, 3...$ 

In the above equations,  $h_n$ ,  $h_{n-1}$ , ...  $h_1$  represents the individual substrate layer thickness starting from the top layer. Further,  $\varepsilon_n, \varepsilon_{n-1}, \ldots \varepsilon_1$  are the complex relative dielectric permittivity of the respective substrate layer, and  $\lambda_0$  is the free-space wavelength. The value of  $\frac{K()}{K'()}$  is given by the following formula

$$\frac{K(k_n)}{K'(k_n)} = \frac{1}{\pi} \ln \left( 2 \frac{1 + \sqrt{k_n}}{1 - \sqrt{k_n}} \right) \quad \text{for } 0.7 \le k_n \le 1$$

| hn               | En                                |
|------------------|-----------------------------------|
| ĥ <sub>n-1</sub> | £ n-1                             |
|                  |                                   |
| hı               | ${}^{f arepsilon_1}$ Ground plane |



### **Characteristic Impedance**

The dispersive behavior of characteristic impedance on the multilayered substrate material is obtained by

$$Z_{c}(f) = Z_{c} \frac{\varepsilon_{e}(f) - 1}{\varepsilon_{e}(0) - 1} \sqrt{\frac{\varepsilon_{e}(0)}{\varepsilon_{e}(f)}}$$

where

$$Z_c = \frac{120\pi}{2\sqrt{\varepsilon_r(0)}} \ln\left(\frac{8h}{w_e} + 0.25\frac{w_e}{h}\right) \quad \text{for } \frac{w_e}{h} \le 1$$

and

$$w_e = \frac{w}{h} + \frac{1.25t}{\pi h} \left( 1 + \ln \frac{4\pi w}{t} \right) \quad \text{for } \frac{w}{h} \le 0.5\pi$$



CE-601

### Effect of Substrate Layers on the Characteristic Impedance

| Four-layered substrate |                |                 |             | Five-layered substrate |                |                 |             |
|------------------------|----------------|-----------------|-------------|------------------------|----------------|-----------------|-------------|
| Layer no.              | Thickness (µm) | $\varepsilon_r$ | $tan\delta$ | Layer no.              | Thickness (µm) | $\varepsilon_r$ | $tan\delta$ |
| h4                     | 10.0           | 7.0             | 0.001       | h5                     | 10.0           | 7.0             | 0.001       |
| h3                     | 5.0            | 6.15            | 0.0025      | h4                     | 5.0            | 6.15            | 0.0025      |
| h2                     | 40.0           | 2.2             | 0.0009      | h3                     | 20.0           | 4.5             | 0.0009      |
| h1                     | 5.0            | 2.45            | 0.0013      | h2                     | 20.0           | 2.2             | 0.0009      |
|                        |                |                 |             | h1                     | 5.0            | 2.45            | 0.0019      |

| Table 2.1 Multilaver | ed substrate | material | transmission | line |
|----------------------|--------------|----------|--------------|------|
|----------------------|--------------|----------|--------------|------|







Fig. 2.6 Characteristic impedance of the five-layered substrate material transmission line





)anna

© Ahmad El-B

- - Nov 201 .ec#3



- For more details, refer to:
  - Chapters 3, Microwave Engineering, David Pozar\_4ed.
  - Lecture Notes of, EE 481 Microwave Engineering Course, Laboratory for applied electromagnetic and communications, South Dakota school for mines and technology, 2013.
- The lecture is available online at:
  - http://bu.edu.eg/staff/ahmad.elbanna-courses/11983
- For inquires, send to:
  - <u>ahmad.elbanna@feng.bu.edu.eg</u>